Estimation Techniques for Testing Projects

V.K. Kripanand
Table of Contents

- Estimation
 - Overview
 - Components of Estimation
 - Factors for Estimation
 - Estimation Model
 - Techniques in Use
 - A discussion on techniques
 - Key Points and Future forward

- Test Projects Estimation
 - Why now?
 - How is it Different?
 - Why is it Important?
 - Future Forward
Table of Contents

- Estimation Techniques for Testing Projects
 - Principles of Estimation
 - Black Box
 - White Box
 - Performance Testing
 - Stress Testing
 - Other Testing
 - Influencing Factors
 - Team Dynamics

- Worksheets to use
 - Test Estimation Worksheets
 - Other Supplemental Worksheets

- Summary
Estimation

Topics

- Overview
- Components of Estimation
- Factors for Estimation
- Estimation Model
- Techniques in Use
- A discussion on techniques
- Key Points and Future forward
Estimation

Overview

- Current Estimation techniques are aplenty
- No subscribed method adopted
- Experience, plays a crucial role
- “Plug and Pray” – “Predict and Pray”
- Why do we need estimation at all?
Components of Estimation

- Manpower cost
- Cost of infrastructure
- Operational costs
 - Special software
 - Communication
 - Travel
 - Training
- Overheads
 - Shared facilities
 - Infrastructure overheads
 - Cost of money
 - Cost of Electricity/welfare/overtime etc
Factors for estimation

- Market opportunity
 - Who the competition is?
 - What is the opportunity now and in the future?
- Contractual terms
 - Are there penalty clauses?
 - Is it phase wise delivery?
- Volatility of requirements
 - How standard is the requirement?
 - What could be the change in requirements over time?
- Past Experience
 - Have we had a better or bitter experience?
 - Have we delivered something similar in the past?
Factors for estimation

- Organizational strengths
 - Management support
 - Strength and expertise of the team
- Skill set
 - Talent pool of engineers and the expectations of the project
 - In house training capability
 - Ability to learn quickly
- Ability to ramp up
 - Can we ramp up our team in case we win the project?
 - Option and flexibility to outsource?
- Technology
 - Complexity
 - Environment – Onsite/Offsite
 - Virtual Testing
Estimation Models

- What is it?
 - Estimation model is the combination of the technique and the factors
 - A predefined framework or template
 - Adaptable with modifications

- Build or use Models?
 - Using existing models is a safe bet
 - Derive and build your own models
Techniques in use

- Pricing to Win
 - What the customer wants to spend
 - Based on budget not on functionality
- Parkinson’s law
 - Expand to fill time
 - No objective assessment
- Analogy
 - Domain based
 - Hugely dependent on past completed projects.
- Expert Judgment
 - Experts of the domain and development practice are consulted
 - Agreement on final estimate is an iterative process
- Algorithmic cost modelling
 - Based on historical cost information
 - Software metric information and a model determine the effort
Some more...

- Pricing to win, Parkinson’s law, Expert judgment
 - May not be relevant in today’s context
- Analogy and Algorithmic models
 - Widely in use
- COCOMO and its variants are a great example
 - Algorithmic approach
 - Based on metrics and formulae
 - Repeatable and Re-usable
- Function points, object points
 - Provide a framework based input
Some more...

- Estimation is not only about effort
 - Model reveals the importance of staff experience in software development
 - As well as effort estimation, managers must estimate the calendar time
 - The time required is independent of the number of people working on the project
 - Staff required $<> (development time/required schedule)$
 - Phase of the project decides the people working on the project

- Cost/schedule risk management
 - Perform computations with and without the risk being realized and see the size of the impact \rightarrow best/worst case estimates
A discussion on techniques...

- Each method has strengths and weaknesses
- Estimation should be based on several methods
- If these do not return approximately the same result, there is insufficient information available
- Some action should be taken to find out more in order to make more accurate estimates

Challenges
- When RS is incomplete
- Complete Details are not available
- Too frequent changes to requirements
Key Points and future forward

- Which Model to use?
 - Because no model is right, all models can be useful
 - Different techniques of cost estimation should be used
- Factors that influence
 - Productivity, Individual aptitude
 - Domain experience
 - Project size, Tool support and Technology challenges
- Use of specific models
 - Algorithmic cost estimation is difficult because of the need to estimate attributes of the finished product
 - The COCOMO model takes project, product, personnel and hardware attributes into account when predicting effort required
 - Algorithmic cost models support quantitative option analysis
 - The time to complete a project is not proportional to the number of people working on the project
Key Points and future forward

- Future Forward
 - Put the best models in use and derive a standard template
 - Learn from past experiences and document the same
 - Collect metrics to use in future, not for name sake
 - Junk in – Junk out (Actual effort data is very crucial)
 - With over 2 decades of collective experience, we should now retrospect with past data
 - Collaborate and co-operate to have a win-win
 - Cut across competitive lines…
 - Adapt the same for different nature of projects – More about this later……
Test Projects Estimation

- Topics
 - The three W’s!
 - Why now?
 - How is it Different?
 - What is Important?
 - Future Forward
Test Projects Estimation

- The three W’s

 - Why?
 - Why the focus now on Test Projects?

 - How?
 - How is this different from normal projects?

 - What?
 - What are the important parameters to consider?
Why Now?

- The market
 - Gartner estimates the worldwide software testing market at $13 Billion
 - India is expected to touch $1 Billion by 2007

- What we need now?
 - Established Estimation Techniques
 - Build large and skilled teams
 - Remove the fad of ‘Testing’ as a non-interesting job!
 - Build frameworks and process methods specific to testing
 - Use automation effectively
 - Leverage the large talent pool
 - Incubate talent with the relevant skills
How is it Different?

- Similar but not same!
 - Estimation techniques can be similar
 - Nature of Effort estimation is different
 - Models can be customized for Test Projects
 - Overheads and factors are different

- Test Projects have to consider these
 - Analysis of test types
 - Factors for estimation are based on Development environment and test environment
 - Demands on Skill, expertise and automation
 - Technology and infrastructure requirements
 - Domain knowledge
What is Important?

- Parameters to consider
 - Estimation methods
 - Can we derive from software estimation techniques
 - Framework
 - Is there a framework that can be built?
 - Knowledge and know-how?
 - Past Experience and know-how is crucial
 - Can we learn from the past?
 - Intelligence (metrics and data) from Projects is very important
 - Team
 - Teams play a crucial role
 - They are the backbone of the execution
 - Who else can predict accurately but them
 - Estimation is not a individual effort
 - It is a team effort!
Future Forward

- Learn from the past
 - Put metrics to best use
- Build a estimation model for testing projects
 - Use existing techniques to interpolate for testing projects
- Process Maturity
 - Build a model for quality of testing
 - Build reusable assets
 - Leverage existing maturity models of the organization
- People skill and talent pool
 - Incubate new talent
 - Identify methods and techniques
Estimation Techniques for Testing Projects

Topics
- Principles of Estimation
- Black Box
- White Box
- Performance Testing
- Stress Testing
- Other Testing
- Influencing Factors
- Team Dynamics
Principles of Estimation

- Principle of Estimation for testing projects shall be
 - Based on
 - Software requirements
 - Previous projects
 - Metrics
 - Estimation shall
 - Never forget the past
 - Be recorded
 - Be supported by tools
 - Be always verified
 - Consider automation needs
 - Consider people skills
 - Other Inputs to consider
 - # of test cases/scenarios,
 - # test cases per scenario,
 - # of builds (for regression)
Black Box

- Pointers for Estimation
 - Business Case
 - Function points
 - Object points
 - Requirement Specifications
 - Development Time
 - Estimate versus Actual
 - Automation
 - Test Bed Conditions
 - Technology requirements
 - Test Reporting
 - Skills
Business Case

- Business cases
 - Normal Scenario
 - Test prescribed functionality
 - Complete Details are available
 - Domain specific
 - Different types of domains require different calculations
 - Sometimes a combination is to be used
 - Not all testing can be completed
 - Scope of testing could be restricted based on the domain
 - Certain assumptions would have to be made
- Challenges – Abnormal Scenario
 - Details are not available
 - Specifications are incomplete!
Function Points

- **Function points**
 - Measure the size of a software application or project based on the number and complexity of user functions requested or delivered.
 - The calculation is objective.
 - Function points are independent of the technology.
 - The calculation can be used early in the development cycle.
 - Productivity history on completed projects with similar characteristics can be used.
 - The measurement is meaningful to non-technical users.
Function Points

- **Function points and Testing**
 - Can be used to estimate test effort
 - Each function point can help in developing relevant test cases
 - Nature of Testing (Black Box, White Box) decide the test cases and their complexities
 - Function point complexity mapped with test case complexity help in deriving test estimation
 - Are a good starting point
 - Combined with Requirement Specifications, Design and Analysis documents, help in arriving to near to actual test effort
 - Could be the best starting point for “Test Case development”
Object Points

- Object Points
 - Object points are an alternative function-related measure to function points when 4GLs or similar languages are used for development.
 - The number of raw objects are estimated, the complexity of each object is estimated, and the weighted total (Object-Point count) is computed.
 - Have nothing to do with objects in Object Oriented Programming.
Object Points

- **Object Points and Testing**
 - Can be used to estimate test effort
 - Each object point can help in developing relevant set of test cases or test suites
 - Re-usability, modularity can be built as against the FP based approach
 - Nature of Testing (Black Box, White Box) decide the test cases and their complexities
 - Object points are most often than not used as indicators of estimation
 - Accuracy on estimation is an iterative process
 - Ideally suited if you have more than one testing project in the same domain
Requirements Specifications

- Requirements Specifications
 - Depict the functionality of the system
 - Details the various components and their desired functionality
 - A good reference point to build test cases for both test to pass and test to fail
 - Test requirements are a good starting point if available
 - A well documented RS will have a good structure and a mature traceability
 - Could be the basis for estimation and project planning of Test Projects
Development Time

- Development of the System Under Test (SUT)
 - Time Taken
 - Time taken to develop the SUT is key
 - Indicates the trend on overrun, complexity
 - If actual time is available, it validates the estimation further
 - Interviews
 - If possible with development team members will provide indicators
 - Domain expertise
 - Prior experience of Testing team and Development Team – a great Plus
 - Past experience in testing similar projects
 - What to focus on – Test to pass or Test to fail?
 - Indicator that decides estimation largely
Estimate versus Actual

- Estimate versus Actual
 - Actual effort spent is a key indicator
 - If each RS item can indicate the time taken, and time allocated, variance can be effectively used
 - More about this in worksheet discussion
 - Actual metrics can provide indications
 - Complexity can be arrived at
 - Technology obstacles can be previewed
 - Tricky and Sticky code portions and implementations can be exposed
 - Nature of effort required to break can be judged
Automation

- **Automation**
 - A key indicator in estimating
 - Automation helps in regression
 - But it always takes more time to build automation suites
 - Trade off – Automation to Individual non-repeatable tests
 - Avoid automating when not deemed fit
 - Incorporate estimations for automation based on repeatability, reusability factors
 - Test Harness creation, maintenance
 - Key to identifying estimates
 - One time effort, but useless if it has no repeatability
 - If mandated, accommodate estimate to ensure that the overall estimate is not hurt
Test Bed Conditions

- Complimentary to Automation
 - Test bed needs more inputs if automation is involved
 - Automation decides the nature of test bed creation
 - Test Bed creation estimates have to consider
 - Initial and repeatable costs
 - Environmental considerations
 - Remote testing
 - Testing on live environments
 - Technology considerations
 - Hardware and software pre-requisites
 - Time to execute
Technology requirements

- Technology challenges are always new
 - New technology, old domain has hidden challenges
 - Support from Development teams crucial for estimation
- Challenges
 - Training time
 - Learning curve
 - Availability of experienced hands
 - Technical know-how is a prime factor
Test Reporting

- Test Reporting is a major activity
 - Estimates usually do not account for reporting
 - Reporting needs are based on process maturity and methodologies
 - Involve your QA Team to identify reporting needs and evolve estimations
 - Building new reports or Bug DB involves development effort
 - Keep the reporting simple if feasible
 - Use ‘Expert Judgment’ extensively
Skills

- Build your team skills continuously
 - Keep hiring the best minds
 - Allow good transition from projects
 - Build Domain expertise and prepare your team for the same
- Your estimate should allow time for skill building
 - Delivering all the time is not fun
 - Learning, delivering and re-learning is the way forward
 - Keep the human factor on top-priority
- Use an updated matrix of skills
 - Use an matrix to map your teams skills
 - Update the matrix regularly
 - Always Interpolate your estimate with skill set matrix
 - Build your own matrix that is suitable and “Keep it simple”
Using a Matrix

- The skill matrix can contain the following
 - Experience
 - Work Experience, Roles, Domains worked on
 - Skills
 - Soft skills
 - Testing skills on standards, process, SDLC, Testing maturity
 - Technology
 - Execution skills on Manual testing, automated testing, script building, automated test execution
 - Automation tools expertise, functional, structural and others
 - Process Maturity
 - Testing skills on planning, documentation, bug isolation, tracking
 - Design and development skills on black-box, white-box, static, dynamic testing, load testing, stress testing, etc
 - Configuration management knowledge
Black box - Summary

Summary

- Use a combination of Function/Object points and Requirement Specifications
- Arrive at test cases and the relevant test suites
- Find about development time estimated and actual
- Interview development team to identify critical paths to test
- Understand automation strategy and build plans for test bed creation/maintenance
- Test harness creation/maintenance should be accounted for
- Finalize your test results reporting techniques and account for the same in your estimate
- Review your skill matrix and map it to the estimate
White box

- Pointers for Estimation
 - Business Case
 - Lines of Code
 - Types of white box testing
 - Structural
 - Code Review
 - Coding Standards
 - Language factors
 - Technology considerations
 - Skills
 - Test Reporting
 - Automation
Business Case

- Business cases
 - Scenario for White Box Testing
 - Adherence to Standards
 - Too buggy code
 - Contractual requirement
 - Legacy code
 - Reverse or Re-Engineering
Lines of Code

- A major contributor
 - Lines of code is a decisive factor for estimation

- Other contributors
 - Complexity, requirement
 - Adherence to Standards
 - Structure of the code
 - Technology consideration
 - Programming Language
Types of white box testing

- Structural
 - Content
 - Reusability
 - Components
 - Maintainability
- Code Review
 - Walkthroughs
 - Discussions
 - Peer Review
- Coding Standards
 - Regulatory Standards
 - Internal Standards
 - Rules set by QA/Process teams
Language factors

- Programming Language
 - Key factors to look for
 - Complexity
 - Rules
 - Adherence to specifications
 - Support of various Standards
 - A key indicator for building the estimation based on skills available
 - Conventional, 3GL, 4GL and machine specific use of language
 - Object oriented languages
 - Increases complexity
 - Component based indices are to be verified
Technology considerations

- Technology
 - Plays a crucial role
 - Identifies what can be tested
 - Non Testable portions or grey areas should be investigated and documented

- Challenges
 - Training time
 - Learning curve
 - Availability of experienced hands
 - Consider using technology experts if skill set is not available internally
Skills

- Different needs from Black box Testing Skills
 - Usually developers with testing prowess is a safer bet
 - Programming language expertise is a must.
 - Good exposure to Software Engineering, metrics, quality indices are absolutely essential
 - Excellent analytical skills to avoid common pitfalls of misinterpreting code.
 - Good knowledge about standards
 - Especially true for embedded/ Mission critical projects
 - Aware of standards and its importance (E.g. DO178B)
Test Reporting

- Test Reporting is a major activity
 - Identify methods of reporting white box testing results
 - Adhere to standards of reporting, if required
 - Very critical when testing against standards
 - Identify critical estimates for building
 - Special reports
 - Reporting templates
 - Comprehensive detailing of white box errors
Automation

- Automation
 - Proven to be at least 10 times more effective
 - Statistical analysis can be much faster
 - Reporting is usually much faster and effective
 - Can reduce the need for
 - Variety of language skills
 - Skilled individuals with knowledge of Adherence to standards
 - Reporting mechanisms and templates
White Box - Summary

- Lines of Code plays an important role
- Programming Language is a key indicator
- Complexity increases when the testing types are more than one
- Skill demands are different from Black Box Testing
- Test results reporting is different
- Adherence to Standards and rules are of prime importance
- Automation reduces time
Performance Testing

- Pointers for Estimation
 - Business case
 - Domain
 - Nature of end users/usage patterns
 - Test Case development is an ongoing process
 - Framework based approach is best advisable
 - Use of automation tools an important factor
 - Automation frameworks provide a lot of estimation built in
 - Technology challenges are high
 - Test Bed Requirements are high
 - Test Data requirements are high
 - Preamble and post amble conditions are very stringent and extra focus is required
Stress Testing

- Pointers for Estimation
 - Business Case
 - Estimation is very similar to performance testing
 - Domain is crucial
 - Nature of end users/usage patterns
 - Critical tests take precedence
 - Test Data requirements are high
 - Technology challenges are high
 - Test Bed Requirements are high
 - Repeatability is a key issue to handle
Other Testing

“OPEN HOUSE” discussion
Influencing Factors

- High Complexity
- Stakeholders are many
- External Dependencies
- Lacking Skills in Domain, Technology
- Have to build new tools/frameworks
- Experimenting…
- Requirement of Hardware/Other infrastructure
- Test Data
- Legal contractual obligations
Team Dynamics

- People, People and People
 - The ones who make Good test Engineers
 - Anticipating the worst – Attitude hard to get, but should strive to find such attitude
 - Should be creative, testing is a creative work, however destructive the approaches are!
 - Curiosity is important, but should not kill the cat!
 - Idea is to find bugs, isolate and report them
 - Skill set mix, is quite important
 - Technical skills, inter-personal skills, soft skills, communication etc, all play a crucial role
 - Domain Experience, would be crucial
 - The team is likely to dilute, so keep the search on all the time
Worksheets

- Worksheets to use
 - Test Estimation Worksheet
 - Other Supplemental Worksheets
Test Estimation Worksheet

- Assimilates inputs from various estimation models to provide
 - Black Box testing estimation
 - White Box testing estimation
 - A basic building block
 - A Collaborate platform to build a comprehensive worksheet
Other Supplemental Worksheets

- Skill Matrix
- Test Bed Checklist
- Technology challenge checklist
- Domain expertise and past project inputs
Summary

- Use existing models to suit your test project requirements
- Estimations could be imprecise – but it’s ok!
- Wrong Estimations should be controllable!
- Re correct your estimate, if you have made a mistake – but do it early
- Collecting metrics and creating ‘Intelligence’ is crucial for success in the future
- Prepare for changes and challenges on a continuous basis
- Start Early and Stay focused
Summary

- Make your team understand dynamics of Test projects – all the time
- Allow team participation wherever possible
- Collaborate, retrospect and co-operate
- Experiment only on a small scale
- Build contingency and risk plans – but keep them trimmed
- Gain Confidence of management with methodologies and processes
- Put your team first and not yourself – it is better in the long run
Acknowledgments

Team – QSIT
Team – SAMGRAM, Chennai
Team – RESOLVERS, Bangalore

References:

Software Engineering
Ian Sommerville
Metrics and Models in Software Engineering
Stephen H Kan
Critical Testing Process
Rex Black

And all the “Software Testing Minds” around the Globe